OPERATIONS RESEARCH WITH ENGINEERING (ORWE)

ORWE481. OPTIMIZATION MODELS IN MANUFACTURING. 3.0 Semester Hrs.

We address the mathematical formulation and solution of optimization models relevant in manufacturing operations. The types of deterministic optimization models examined include: (i) network models; (ii) linear programs; (iii) integer programs; and, (iv) nonlinear programs. Application areas include scheduling, blending, design, equipment replacement, logistics and transportation, among other topics. Students learn not only how to mathematically formulate the models, but also how to solve them with a state-of-the-art modeling language (AMPL) and appropriate solver (e.g., CPLEX or Minos). Algorithms for each problem class will be briefly discussed.

ORWE559. SUPPLY CHAIN MANAGEMENT. 3.0 Semester Hrs.

(II) Due to the continuous improvement of information technology, shorter life cycle of products, rapid global expansion, and growing strategic relationships, supply chain management has become a critical asset in today?s organizations to stay competitive. The supply chain includes all product, service and information flow from raw material suppliers to end customers. This course focuses on the fundamental concepts and strategies in supply chain management such as inventory management and risk pooling strategies, distribution strategies, make-to-order/make-to-stock supply chains, supplier relationships and strategic partnerships. It introduces quantitative tools to model, optimize and analyze various decisions in supply chains as well as real-world supply chain cases to analyze the challenges and solutions. 3 hours lecture; 3 semester hours.

ORWE585. NETWORK MODELS. 3.0 Semester Hrs.

(I) We examine network flow models that arise in manufacturing, energy, mining, transportation and logistics: minimum cost flow models in transportation, shortest path problems in assigning inspection effort on a manufacturing line, and maximum flow models to allocate machine-hours to jobs. We also discuss an algorithm or two applicable to each problem class. Computer use for modeling (in a language such as AMPL) and solving (with software such as CPLEX) these optimization problems is introduced. 3 hours lecture; 3 semester hours.

ORWE586. LINEAR OPTIMIZATION. 3.0 Semester Hrs.

(I) We address the formulation of linear programming models, linear programs in two dimensions, standard form, the Simplex method, duality theory, complementary slackness conditions, sensitivity analysis, and multi-objective programming. Applications of linear programming models include, but are not limited to, the areas of manufacturing, energy, mining, transportation and logistics, and the military. Computer use for modeling (in a language such as AMPL) and solving (with software such as CPLEX) these optimization problems is introduced. Offered every other year. 3 hours lecture; 3 semester hours.

ORWE587. NONLINEAR OPTIMIZATION. 3.0 Semester Hrs.

(I) This course addresses both unconstrained and constrained nonlinear model formulation and corresponding algorithms (e.g., Gradient Search and Newton's Method, and Lagrange Multiplier Methods and Reduced Gradient Algorithms, respectively). Applications of state-of-the-art hardware and software will emphasize solving real-world engineering problems in areas such as manufacturing, energy, mining, transportation and logistics, and the military. Computer use for modeling (in a language such as AMPL) and solving (with an algorithm such as MINOS) these optimization problems is introduced. Offered every other year. 3 hours lecture; 3 semester hours.

ORWE588. INTEGER OPTIMIZATION. 3.0 Semester Hrs.

(I) This course addresses the formulation of integer programming models, the branch-and-bound algorithm, total unimodularity and the ease with which these models are solved, and then suggest methods to increase tractability, including cuts, strong formulations, and decomposition techniques, e.g., Lagrangian relaxation, Benders decomposition. Applications include manufacturing, energy, mining, transportation and logistics, and the military. Computer use for modeling (in a language such as AMPL) and solving (with software such as CPLEX) these optimization problems is introduced. Offered every other year. 3 hours lecture; 3 semester hours.

ORWE686. ADVANCED LINEAR OPTIMIZATION. 3.0 Semester Hrs.

(II) As an advanced course in optimization, we expand upon topics in linear programming: advanced formulation, the dual simplex method, the interior point method, algorithmic tuning for linear programs (including numerical stability considerations), column generation, and Dantzig-Wolfe decomposition. Time permitting, dynamic programming is introduced. Applications of state-of-the-art hardware and software emphasize solving real-world problems in areas such as manufacturing, mining, energy, transportation and logistics, and the military. Computers are used for model formulation and solution. Offered every other year. Prerequisite: MEGN586. 3 hours lecture; 3 semester hours.

ORWE688. ADVANCED INTEGER OPTIMIZATION. 3.0 Semester Hrs.

(II) As an advanced course in optimization, we expand upon topics in integer programming: advanced formulation, strong integer programming formulations (e.g., symmetry elimination, variable elimination, persistence), in-depth mixed integer programming cuts, rounding heuristics, constraint programming, and decompositions. Applications of state-of-the-art hardware and software emphasize solving real-world problems in areas such as manufacturing, mining, energy, transportation and logistics, and the military. Computers are used for model formulation and solution. Prerequisite: MEGN588. 3 hours lecture; 3 semester hours. Offered every other year.